Effect of Temperature and Time on Microstructure and Surface Functional Groups of Activated Carbon Fibers Prepared from Liquefied Wood

نویسندگان

  • Wenjing Liu
  • Guangjie Zhao
چکیده

Activated carbon fibers were prepared from liquefied wood through stream activation. The effects of activation temperature and time on the microstructure and surface functional groups of the liquefied wood activated carbon fibers (LWACFs) were studied using analysis of burning behavior, X-ray diffraction, nitrogen adsorption-desorption isotherms, Xray photoelectron spectroscopy, and SEM. The results showed that the burn-off value of the LWACFs increased gradually with the increase in temperature or time. All the LWACFs were far from being structurally graphitized, and in general, as temperature or time increased, the degree of graphitization and thickness of crystal structure increased. In addition, the LWACFs possessed rich micropores, and their specific surface area, pore volume, micropore size, and mesopore quantity were directly related to the activation temperature or time. The maximum specific surface area was found to be 2641 m 2 /g. The fractal dimension values of all samples were close to 3, indicating that their surfaces were very rough. Furthermore, with an increase in temperature or time, the elemental content of carbon increased, while that of oxygen decreased. Meanwhile, as the temperature or time increased, the relative content of graphitic carbon decreased, whereas that of carbon bonded to oxygencontaining functions increased. The surface of samples prepared at higher temperature or with longer time formed a considerable amount of holes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and Characterization of Activated Carbon Fibers from Liquefied Wood by ZnCl2 Activation

In this study, activated carbon fibers (ACFs) were prepared from liquefied wood by chemical activation with ZnCl2, with a particular focus on the effects of temperature and ZnCl2: liquefied wood-based fiber (LWF) ratio on yield, porous texture, and surface chemistry. The characterization and properties of these ACFs were investigated by nitrogen adsorption/desorption, Fourier transform infrared...

متن کامل

Production of Activated Carbon from Cellulose Wastes

Cellulose wastes of a wood and paper factory were used to produce activated carbon. Several chemical agents under various conditions were used for production of activated carbon and hence their adsorption properties have been evaluated. In addition the effect of process parameters such as raw material, chemical agent concentration, impregnation ratio, carbonization temperature, carbonization ti...

متن کامل

Modification of activated carbon by cold plasma and its effect on the adsorption of toluene

Abstract Background and aims: Clean air is one of the basic needs for human health and well-being. However, along with economic growth and development, transportation, urbanization and energy consumption have also risen and provide many concerns such as air pollution, which require urgent and wide attention. Air pollution in the worldwide is considered as a risk factor for human health and one...

متن کامل

Preparation, characterization and phenol adsorption capacity of activated carbons from African beech wood sawdust

In the present study, different activated carbons were prepared from carbonized African beech wood sawdust by potassium hydroxide activation. The activated carbons were characterized by brunauer–emmett–teller, scanning electron microscope, fourier transform infrared spectroscopy, and thermogravimetric analyzer. The phenol adsorption capacity of the prepared carbons was evaluated. The d...

متن کامل

Removal of Methyl Orange Dye from Aqueous Solution by a Low-Cost Activated Carbon Prepared from Mahagoni (Swietenia mahagoni) Bark

This study utilized Swietenia mahagoni bark–a wood processing industry waste, for the preparation of activated carbon, and then investigated for the removal of methyl orange (MO) dye by the Swietenia mahagoni bark activated carbon (SMBAC). The effect of pH (3–10), adsorbent dose (1–30 g/L), initial MO dye concentration (10–100 mg/L), and contact time (1–240 min) were evaluated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012